4 resultados para hardware computing

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The domain of thermal therapies applications can be improved with the development of accurate non-invasive timespatial temperature models. These models should represent the non-linear tissue thermal behaviour and be capable of tracking temperature at both time-instant and spatial position. If such estimators exist then efficient controllers for the therapeutic instrumentation could be developed, and the desired safety and effectiveness reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La seguridad y eficacia de las terapias térmicas están ligadas con la determinación exacta de la temperatura, es por ello que la retroalimentacón de la temperatura en los métodos computacionales es de vital importancia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A DS-CDMA (Direct Sequence-Coded Division Multiple Access) system has maximum spectral efficiency if the system is fully loaded (i.e., the number of users is equal to the spreading factor) and we employ signals with bandwidth equal to the chip rate. However, due to implementation constraints we need to employ signals with higher bandwidth, decreasing the system’s spectral efficiency. In this paper we consider prefixassisted DS-CDMA systems with bandwidth that can be significantly above the chip rate. To allow high spectral efficiency we consider highly overloaded systems where the number of users can be twice the spreading factor or even more. To cope with the strong interference levels we present an iterative frequencydomain receiver that takes full advantage of the total bandwidth of the transmitted signals. Our performance results show that the proposed receiver can have excellent performance, even for highly overloaded systems. Moreover, the overall system performance can be close to the maximum theoretical spectral efficiency, even with transmitted signals that have bandwidth significantly above the chip rate.